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Abstract. In this paper, we investigate the generalized eigenvalue problem Ax = λBx arising
from economic models. Under certain conditions, there is a simple generalized eigenvalue ρ(A,B)
in the interval (0, 1) with a positive eigenvector. Based on the Noda iteration, a modified Noda
iteration (MNI) and a generalized Noda iteration (GNI) are proposed for finding the generalized
eigenvalue ρ(A,B) and the associated unit positive eigenvector. It is proved that the GNI method
always converges and has a quadratic asymptotic convergence rate. So GNI has a similar convergence
behavior as MNI. The efficiency of these algorithms is illustrated by numerical examples.
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1. Introduction. For any real matrix A = [aij ] ∈ Rn×n, we say that A is
nonnegative, and write A ≥ 0, if aij ≥ 0 for all i, j. The matrix A is called positive,
A > 0, if aij > 0 for all i, j. If A = [aij ], B = [bij ] are n × n real matrices, then
A ≥ B(A > B) means that aij ≥ bij(aij > bij) for all i, j. A nonnegative (positive)
vector is defined in the same way. The identity matrix of an appropriate size is denoted
by I. For a matrix A, its transpose is denoted by AT . ‖ · ‖ denotes the Euclidean

vector norm and the matrix spectral norm. For real vectors v =
(
v(1),v(2), . . . ,v(n)

)T
and w =

(
w(1),w(2), . . . ,w(n)

)T
with v(i) 6= 0 for all i, we use w

v to denote the

column vector whose ith component is w(i)

v(i) . We also define maxw = max
i

w(i) and

minw = min
i

w(i). An n × n matrix A is said to be reducible if A is either the 1× 1

zero matrix or if there exists a permutation matrix P such that

PAPT =

[
E 0
F G

]
,

where E,G are square matrices. If A is not reducible, then it is called irreducible.
A matrix pair (A,B) is regular if both A and B are n × n and there exists a pair of
complex numbers (α, β) 6= (0, 0) such that det(αA+ βB) 6= 0, [6, 16].

The generalized eigenproblem of a general matrix pair (A,B) with A,B ∈ Cm×n
is to solve the equation:

Ax = λBx, λ ∈ C, 0 6= x ∈ Cn.(1.1)
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If λ and x satisfies this equation, we call (λ,x) an eigenpair of (A,B). When B = I,
it is an eigenpair of the matrix A.

The eigenproblem (1.1) has been extensively studied and various powerful nu-
merical methods have been developed, e.g., [6, 15, 16]. In this paper, we consider
the eigenvalue problem of a special type of matrix pairs that exhibit the same kind
of properties of nonnegative matrices provided by the Perron-Frobenius theory. Such
a generalized eigenproblem has important applications in economy in the context of
Sraffa’s model for the joint production of commodities by means of commodities, see
[14, page 53] and [13], where the entry aij of A indicates the quantity of the ith com-
modity that enters as means of production into the jth industry, and the entry bij of
B indicates the quantity of ith commodity produced by the jth industry. A closely
related generalized eigenproblem also arises from finite element approximation of the
eigenvalue problem of second-order elliptic operators [7] (also see Example 5.3).

Motivated by a nonlinear extension of the Perron-Frobenius theory in [11], Fuji-
moto considered in [5] the problem (1.1) with A,B ∈ Rn×n and satisfying the following
conditions:

(C1) A ≥ 0.

(C2) A is irreducible.

(C3) there exists a vector v > 0 such that Bv > Av.

(C4) for all i 6= j, bij ≤ aij .

Economic interpretation of these conditions is given in [5]. It has shown in [5] that if
the conditions (C1)-(C4) are satisfied, then (1.1) has a solution (λ,x) with λ ∈ (0, 1)
and x > 0. In [2], a stronger result was derived and it is contained in the following
theorem.

Theorem 1.1. Let A and B be n × n matrices satisfying the conditions (C1)-
(C4). Then there exist λ ∈ (0, 1) and a vector x∗ > 0 such that Ax∗ = λBx∗.

Furthermore, if Av = λ
′
Bv for λ

′ ≥ 0 and v ≥ 0,v 6= 0, then λ
′

= λ and
v = αx∗ for some α > 0.

Because of Theorem 1.1, we are able to give the following definition.

Definition 1.1. Under the conditions (C1)-(C4), we call the unique value λ ∈
(0, 1) in Theorem 1.1 the Perron root of the pair (A,B) and denote it by ρ(A,B), and
its corresponding positive eigenvector x∗ is called the Perron vector of (A,B). We
call the pair (ρ(A,B),x∗) the Perron pair of (A,B).

If A is a nonnegative irreducible matrix and B = I, then Theorem 1.1 reduces
to the Perron-Frobenius Theorem of nonnegative irreducible matrices ([3, Theorem
1.4]). In this case ρ(A, I) = ρ(A), the Perron root of A. Therefore, ρ(A,B) can be
thought of as a generalization of the Perron root of a nonnegative irreducible matrix.
The difference is, unlike the Perron root of nonnegative matrix, ρ(A,B) may not
necessarily be the largest generalized eigenvalue of Ax = λBx in magnitude ([2]).

In 1971, Noda [12] introduced a positivity preserving method, which is now called
the Noda iteration (NI), for computing the Perron pair (Perron root and Perron
vector) of a nonnegative matrix. NI always converges and has a quadratic convergence
rate ([4, 8]). Recently, NI has be modified for solving the eigenproblem of M-matrices
and nonnegative tensors, e.g., [8, 9, 10, 18]. In this paper, we propose two NI type
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iterative methods for computing the Perron pair of a matrix pair (A,B) satisfying
the conditions (C1)-(C4). We first present a modified Noda iteration (MNI) that is
directly modified from the standard NI. Next, we propose a generalized Noda iteration
(GNI). GNI is similar to MNI. Both can be viewed as shift-invert power (SIP) methods
([1]). Unlike a general SIP, both GNI and MNI have three advantages: (i) The
shifts generated from the iteration form a monotonically decreasing sequence and will
converge to the Perron root from the right; (ii) For an arbitrary positive initial vector,
the vectors generated from the iteration preserve the positivity and will converge to
a Perron vector; (iii) The asymptotic convergence rate is quadratic.

The paper is organized as follows. In Section 2, we further give some properties
of the Perron pair for the matrix pair (A,B) satisfying the conditions (C1)-(C4). In
Section 3, we introduce the Noda iteration and propose a modified Noda iteration
(MNI) and a generalized Noda iteration (GNI) for the matrix pair satisfying the
conditions (C1)-(C4). In Section 4, we establish a convergence theory for GNI. There
we show that GNI always converges at a quadratic rate. In Section 5, we present
two numerical examples to demonstrate the effectiveness and convergence behavior of
both iterations. Some concluding remarks are given in Section 6.

2. Generalized eigenproblem satisfying the conditions (C1)-(C4). In
this section, we further present some existing and new properties of the Perron pair for
a matrix pair that satisfies the conditions (C1)-(C4). The properties will be served as a
basis for constructing the iterative methods and studying their convergence behavior.

First, we review some fundamental properties related to nonnegative matrices.
A real square matrix A is a Z-matrix if all its off-diagonal elements are nonpositive.
Any Z-matrix can be written as sI −B with B ≥ 0, and it is a nonsingular M-matrix
if s > ρ(B). Here ρ(B) is the Perron root of B.

The following result is well known [17, 19].

Proposition 2.1. For a Z-matrix A, the following are equivalent:

(1) A is a nonsingular M-matrix.

(2) A−1 ≥ 0.

(3) Av > 0 for some vector v ≥ 0.

In [2], by using Proposition 2.1 (3) it shows that if a matrix pair (A,B) satisfies
the conditions (C3) and (C4) then the matrix B −A is an invertible M-matrix. This
also implies that under the conditions (C3) and (C4) the matrix pair (A,B) is regular.

When B −A is invertible, the generalized eigenproblem (1.1) is equivalent to the
standard eigenproblem of the matrix (B − A)−1A. This is the fundamental trans-
formation used in [2] for generalizing the Perron-Frobenius theory. We summarize
the relations between these two eigenproblems in the following lemmas and theorems.
Most of the results can be found in [2].

Lemma 2.1. Let (A,B) be an n×n matrix pair and let B−A be invertible. Then
(λ,x) is an eigenpair of the matrix (B−A)−1A if and only if ( λ

1+λ ,x) is an eigenpair
of (A,B).

Proof. The proof is straightforward. (λ,x) is an eigenpair of (B − A)−1A if and
only if (B −A)−1Ax = λx. The latter is equivalent to

Ax = λ(B −A)x,
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which is further equivalent to

(1 + λ)Ax = λBx or Ax =
λ

1 + λ
Bx.

Corollary 2.1. For a matrix pair (A,B) under the assumptions of Lemma 2.1,
define C = (B − A)−1A. Let λ be an eigenvalue of C. Then ρ = λ/(1 + λ) is an
eigenvalue of (A,B). The relation between λ and ρ can be characterized as follows.

(1) λ ≥ 0 if and only if ρ ∈ [0, 1);

(2) −1 6= λ < 0 if and only if ρ ∈ (−∞, 0) ∪ (1,+∞) ;

(3) λ = −1 if and only if ρ =∞;

(4) λ is complex and Im(λ) 6= 0 if and only if ρ is complex and Im (ρ) 6= 0,
where Im(z) denotes the imaginary part of a complex number z.

Remark 2.1. When λ = −1, we have Bx = 0 for some nonzero vector x. In that
case, the matrix pair (A,B) is said to have an infinite eigenvalue, see e.g., [Chap. VI,
16].

The main results in this section are included in the following theorems.

Theorem 2.1 ([2]). Let (A,B) be an n× n matrix pair satisfying the conditions
(C1)-(C4), and let C = (B − A)−1A. Then C is an irreducible nonnegative matrix,
and we have the follow properties:

(1) ρ(A,B) = ρ(C)
1+ρ(C) ∈ (0, 1) is a simple eigenvalue of (A,B) with a positive

eigenvector x∗;

(2) Any nonnegative eigenvector of (A,B) must be αx∗ for some α > 0;

(3) There is no eigenvalue of (A,B) lying in the interval (ρ(A,B), 1].

Proof. The results are simply from [2, Theorem 2.2] and Corollary 2.1.

Note that Theorem 2.1 includes Theorem 1.1.

Theorem 2.2. Let (A,B) be an n × n matrix pair satisfying the conditions
(C1)-(C4). Then for any ρ ∈ (ρ(A,B), 1], ρB −A is a nonsingular M-matrix.

Proof. Since λ ≤ 1, from the condition (C3), λB − A is a Z-matrix. Based on
Theorem 2.1, there exists a Perron vector x∗ > 0 such that

(ρ(A,B)B −A)x∗ = 0.

Since A is nonnegative and irreducible, Bx∗ = 1
ρ(A,B)Ax∗ > 0. Because ρ > ρ(A,B),

we get

(ρB −A)x∗ = (ρ− ρ(A,B))Bx∗ + (ρ(A,B)B −A)x∗ = (ρ− ρ(A,B))Bx∗ > 0.

So by Proposition 2.1 (3), ρB −A is a nonsingular M-matrix.

The following result is a generalization of [17, Theorem 2.2] and [2, Theorem 3.2].

Theorem 2.3. Let (A,B) be an n×n matrix pair satisfying the conditions (C1)-
(C4). If v ≥ 0 is not an generalized eigenvector of (A,B) and satisfies Bv > 0,
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then

min
Av

Bv
< ρ(A,B) < max

Av

Bv
.(2.1)

Proof. The proof follows directly from the proofs for Theorem 3.2 and Corollary
3.3 in [2]. The inequalities must be strict, since one of them becomes equality only
when min Av

Bv = max Av
Bv . The latter holds true if and only if v is an eigenvector of

(A,B).

The following result is from [2, Corollary 3.3].

Theorem 2.4. Under the conditions (C1)-(C4), we have

max
v≥0,Bv>0

min
Av

Bv
= ρ(A,B) = min

v≥0,Bv>0
max

Av

Bv
.

3. Noda iterations for generalized eigenproblems. The original Noda it-
eration (NI) is for computing the Perron pair of an irreducible nonnegative matrix C
([12]).

Algorithm 1. Noda iteration (NI)

1. Given λ0 > ρ(C),x0 > 0 with ‖x0‖ = 1, and tol > 0.
2. for k = 0, 1, 2, . . .
3. Solve (λkI − C)yk+1 = xk.
4. Normalize the vector xk+1 = yk+1/‖yk+1‖.
5. Compute λk+1 = λk −min xk

yk+1
.

until ‖λk+1xk+1 − Cxk+1‖ < tol.
6. Output: ρ(C)← λk+1 and x∗ ← xk+1.

The algorithm NI is similar to the Rayleigh quotient iteration, but with a different
way of choosing shifts. In fact, λk+1 = max(Cxk+1/xk+1), and from the linear system
in the iteration, one has

λk+1 = max
Cxk+1

xk+1
= max

Cyk+1

yk+1
= max

λkyk+1 − xk
yk+1

= λk −min
xk

yk+1
.

Clearly, if xk > 0 and λk > ρ(C), because λkI − C in an invertible M-matrix,
we have yk+1 > 0 and xk+1 > 0. Then λk+1 < λk, and from [17, Theorem 2.2],
λk+1 > ρ(C). Therefore, once λ0 and x0 satisfy the conditions in Algorithm 1, NI
generates a decreasing shift sequence {λk} bounded below from ρ(C) and a positive
vector sequence {xk}. It is known that ({λk}, {xk}) always converge to the Perron
pair of the matrix C quadratically ([4]).

For a matrix pair (A,B) satisfying the conditions (C1)-(C4), based on Theo-
rem 2.1 its Perron pair can be computed by applying Algorithm 1 directly to the
irreducible nonnegative matrix C := (B − A)−1A. However, computing C explicitly
may cause numerical instability when B−A is ill-conditioned. In order to avoid this,
we pre-multiply B−A to the linear system in Step 3 of Algorithm 1 and change it to

[λkB − (1 + λk)A]yk+1 = (B −A)xk.
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We also change the shift λk to ρk := λk/(1 + λk). By dividing 1 + λk on both sides
of the above equation and using 1

1+λk
= 1− ρk, we obtain

(ρkB −A)yk+1 = (1− ρk)(B −A)xk.(3.1)

With τk := min (xk/yk+1), from Step 5 of Algorithm 1, λk+1 = λk − τk. Then

ρk+1 =
λk − τk

1 + (λk − τk)
=
λk/(1 + λk)− τk/(1 + λk)

1− τk/(1 + λk)

=
ρk − (1− ρk)τk
1− (1− ρk)τk

= ρk −
(1− ρk)2τk

1− (1− ρk)τk
.(3.2)

This formula can be used for computing the next shift during the iteration process.
Since {λk} generated in Algorithm 1 is decreasing and since the function ρ = λ/(1+λ)
is an increasing function in the interval [0,∞], {ρk} is decreasing as well. If the initial
shift ρ0 is selected on the interval (ρ(A,B), 1), which is equivalent to, λ0 > ρ(C), the
shift sequence {ρk} is decreasing and converges to ρ(A,B) from the right. We may
simplify the iteration further based on the the fact that in each iteration we only need
the direction of yk+1. We may remove the scalar 1 − ρk on the right hand side of
(3.1) by replacing yk+1 with ỹk+1 := yk+1/(1− ρk). Then (3.1) becomes

(ρkB −A)ỹk+1 = (B −A)xk.

By introducing

τ̃k := (1− ρk)τk = min
xk

ỹk+1
,

the formula (3.2) becomes

ρk+1 = ρk −
(1− ρk)τ̃k

1− τ̃k
.

We then have the following modified version (MNI) of NI that applies directly to the
matrix pair (A,B). (We will use yk+1 and τk instead of ỹk+1 and τ̃k in the algorithm.)

Algorithm 2. Modified Noda iteration (MNI)

1. Given ρ0 ∈ (ρ(A,B), 1),x0 > 0 with ‖x0‖ = 1, and tol> 0.
2. for k = 0, 1, 2, . . .
3. Solve (ρkB −A)yk+1 = (B −A)xk.
4. Normalize the vector xk+1 = yk+1/‖yk+1‖.
5. Compute ρk+1 = ρk − (1− ρk) τk

1−τk , where τk = min xk

yk+1
.

until: ‖ρk+1Bxk+1 −Axk+1‖ < tol.
6. Output: ρ(A,B)← ρk+1 and x∗ ← xk+1.

The generalized Noda iteration (GNI) presented below is based on Theorems 2.2
and 2.3. Let (A,B) be an n× n matrix pair satisfying the conditions (C1)-(C4). By
Theorem 2.2 for any scalar ρk ∈ (ρ(A,B), 1], ρkB − A is an invertible M-matrix and
then (ρkB−A)−1A is an irreducible nonnegative matrix. Suppose xk > 0. The linear
system

(ρkB −A)yk+1 = Axk(3.3)
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has a unique solution yk+1 > 0. Then xk+1 = yk+1/‖yk+1‖ > 0. Following Theo-
rem 2.3,

ρk+1 = max
Axk+1

Bxk+1
= max

Ayk+1

Byk+1
> ρ(A,B).(3.4)

On the other hand, from (3.3),

ρk+1 = ρk max
Ayk+1

ρkByk+1
= ρk max

Ayk+1

A(yk+1 + xk)

= ρk

[
1−min

Axk
A(yk+1 + xk)

]
.(3.5)

This shows that ρk+1 ∈ (ρ(A,B), 1]. Therefore, we can construct an iteration by using
(3.3) to generate a positive vector sequence {xk} and using (3.4) to generate a shift
sequence {ρk}. The iteration process is described in the following algorithm. Note
that the matrix B is not necessarily nonnegative. Although in (3.4), Byk+1 must be
positive, in order to avoid of any possible numerical problems we use the formula (3.5)
for generating the shifts.

Algorithm 3. Generalized Noda iteration (GNI)

1. Given ρ0 = 1,x0 > 0 with ‖x0‖ = 1, and tol > 0.
2. for k = 0, 1, 2, . . .
3. Solve (ρkB −A)yk+1 = Axk.
4. Normalize the vector xk+1 = yk+1/‖yk+1‖.
5. Compute ρk+1 = ρk

[
1−min Axk

Ayk+1+Axk

]
.

until ‖ρk+1Bxk+1 −Axk+1‖ < tol.
6. Output: ρ(A,B)← ρk+1 and x∗ ← xk+1.

The linear system in Step 3 of GNI is similar to the one in MNI. This is because
if {xk} → x∗, then Axk and Bxk are getting close to be parallel. So are Axk and
(B − A)xk. On the other hand, if xk > 0, it is clear that Axk > 0 but it is not clear
whether (B − A)xk is positive. Another advantage that GNI has is the choice of ρ0.
In GNI we can always simply select ρ0 = 1, while in MNI ρ0 has to be smaller than 1.
Otherwise, ρk = 1 for all k and MNI fails. In fact, we can run one or more iterations
of GNI to generate a shift that serves as an initial shift for MNI if necessary.

Remark 3.1. If in addition B is also nonnegative, the GNI can be modified by
changing Axk on the right hand side of the equation in Step 3 to Bxk. It can be proved
in the same way that the modified iteration always converges and the convergence rate
is quadratic.

Remark 3.2. In view of MNI and GNI, one may consider a more general iteration
formula for Step 3 as

(ρkB −A)yk+1 = (αkA+ βkB)xk.

Note in MNI, αk ≡ 1 and βk ≡ −1, and in GNI, αk ≡ 1 and βk ≡ 0. How to choose
αk, βk in each iteration to make the method more efficient? Further work needs to be
done in order to answer this question.
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Remark 3.3. The matrix pair (C,D), where C is an invertible M-matrix and
D is an irreducible nonnegative matrix, has a simple positive eigenvalue λ that is the
smallest in modulus among all the eigenvalues. This is simply from the fact that 1/λ
is the Perron root of the irreducible matirx C−1D. So λ has a corresponding positive
eigenvector. Such a matrix pair can be found in the finite element approximation of
the eigenvalue problem of second-order elliptic operators ([7]). This matrix pair can
be transformed to a matrix pair (A,B) that satisfies the conditions (C1)-(C4) with
A = D and B = C + D. The eigenvalue λ and the Perron root ρ(A,B) have the
relation ρ(A,B) = 1/(1 + λ). Therefore, in order to compute the eigenvalue λ of
(C,D), one may apply either MNI or GNI to (A,B). Certainly, both MNI and GNI
can be adapted to apply to the pair (C,D) directly.

The algorithm MNI is simply modified from NI, so it always converges at a
quadratic convergence rate. In the next section, we will show that GNI has exactly
the same convergence behavior.

4. Convergence analysis of GNI. In this section we always assume that
(A,B) is an n × n matrix pair satisfying the conditions (C1)-(C4). With this as-
sumption from Theorem 1.1 or 2.1, (A,B) has a Perron pair (ρ(A,B),x∗). We will
show that GNI always converges and its asymptotic convergence rate is quadratic.

Suppose {xk} is the set of positive vectors generated by GNI. If xk = x∗ for some
k. Then from (3.4), ρk = ρ(A,B). The next iteration breaks down, but we have
obtained the exact Perron pair. In the following we always assume that xk 6= x∗ for
all k. For simplicity, we set ρ ≡ ρ(A,B). Since (A,B) is regular, for any scalar µ that
is not an eigenvalue of (A,B), the matrix µB −A is nonsingular.

In the previous section we showed several properties of the sequences {ρk} and
{xk} generated by GNI. We now include these properties in the following lemma.

Lemma 4.1. Let (A,B) be an n× n matrix pair satisfying the conditions (C1) -
(C4). Let the sequences {yk}, {xk}, and {ρk} be generated by Algorithm 3. Assume
that xk 6= x∗ for all k ≥ 0. Then xk > 0 and Byk > 0 for all k ≥ 0, and the shift
sequence {ρk} is monotonically decreasing and bounded below by ρ, i.e., 1 = ρ0 >
ρ1 > · · · > ρk > ρk+1 > · · · > ρ.

Proof. We prove xk > 0 by induction on k. From Theorem 2.2 we know that ρ0B−
A = B−A is a nonsingular M-matrix. So by Proposition 2.1, we have (ρ0B−A)−1 ≥ 0
and the matrix (ρ0B − A)−1 doesn’t have a zero row. Because A is irreducible and
nonnegative and x0 > 0,

y1 = (ρ0B −A)−1Ax0 > 0,

and then x1 = y1/‖y1‖ > 0. This shows that x1 > 0.

Suppose xk > 0 for some k ≥ 1. We consider the k+ 1 case. Since xk 6= x∗, from
(3.4), ρk > ρ. Similarly, we can prove yk+1 > 0 and xk+1 > 0.

From ρkByk+1 = Axk +Ayk+1 we get Byk+1 > 0 for all k. It is easy from (3.4)
and Theorem 2.3 to know that the monotonicity of {ρk} is from (3.4) and (3.5).

Lemma 4.2. Let (A,B) be an n × n matrix pair satisfying the conditions (C1)-
(C4), and let {xk} be generated by Algorithm 3. Then for any convergent subsequence
{xkj} ⊆ {xk}, lim

j→∞
xkj > 0.
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Proof. Let v = lim
j→∞

xkj . From Lemma 4.1, v ≥ 0. From (3.4) and Lemma 4.1,

1 = ρ0 > ρkj = max
Axkj
Bxkj

≥
(Axkj )(i)

(Bxkj )(i)
→ (Av)(i)

(Bv)(i)
,

for all i = 1, 2, . . . , n. Hence,

(Av)(i) < (Bv)(i), ∀i ∈ {1, 2, . . . , n}.

Suppose v(s) = 0 for some s, then the above inequality with i = s implies,

n∑
j=1,j 6=s

(asj − bsj)v(j) < 0,

which contradicts to the condition (C4). Therefore, v > 0.

Lemma 4.3. Let (A,B) be an n × n matrix pair satisfying the conditions (C1)-
(C4), and let the positive vector sequence {yk} be generated by Algorithm 3. Then

lim
k→∞

1

‖yk‖
= 0.(4.1)

Proof. From (3.5), one has

1− ρk+1

ρk
= min

Axk
Ayk+1 +Axk

.

It follows from Lemma 4.1 that {ρk} converges. So

lim
k→∞

(
1− ρk+1

ρk

)
= 0.

Then

lim
k→∞

min
Axk

Ayk+1 +Axk
= lim
k→∞

min
Axk

‖yk+1‖Axk+1 +Axk
= 0.

Next we show that all the components of Axk are bounded below by a positive con-
stant independent of k. If not, there exists a subsequence {xkj} such that for some
integer i,

lim
j→∞

(Axkj )(i) = 0.(4.2)

Since ‖xkj‖ = 1 for all kj , we may assume that lim
j→∞

xkj = v exists. By Lemma 4.2,

v > 0. Since A is nonnegative irreducible, we have

lim
j→∞

(Axkj )(i) = lim
j→∞

(Av)(i) > 0.

This is contradictory to (4.2). Therefore, (Axk)(i) ≥ β > 0 for some constant β > 0.
Because ‖xkj‖ = 1, (Axk)(i) ≤ α for any k and i for some constants α ≥ β. Then

0 = lim
k→∞

min
Axk

‖yk+1‖Axk+1 +Axk
≥ lim
k→∞

β

(‖yk+1‖+ 1)α
,
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and from which one has (4.1).

We also need the following results for proving the convergence properties of GNI.

Lemma 4.4. Let (E,F ) be an n × n real regular matrix pair. If a real number
λ ∈ R and a real vector x ∈ Rn satisfy

Ex = λFx, ‖x‖ = 1,

then there exist real nonsingular matrices U and V such that

E = U

[
λ eT

0 E1

]
V −1, F = U

[
1 fT

0 F1

]
V −1,

where U = (γu1, U2), V = (x, V2) ∈ Rn×n with γ = ‖Fx‖ > 0, u1 = Fx/γ, and
(u1, U2), V are orthogonal matrices.

Proof. It is similar to the proof of Theorem 1.9 in [16, page 276].

Let (A,B) be the n× n matrix pair satisfying the conditions (C1)-(C4). Then it
follows from Theorem 1.1 or Theorem 2.1 that (A,B) is a regular matrix pair and it
has a Perron pair (ρ,x∗) satisfying

Ax∗ = ρBx∗, ‖x∗‖ = 1.

From Lemma 4.4, there exist matrices U = (γu1, U2), V = (x∗, V2) ∈ Rn×n with
γ = ‖Bx∗‖ and u1 = Bx∗/γ such that (u1, U2) and V are real orthogonal, and

A = U

[
ρ aT

0 A1

]
V −1, B = U

[
1 bT

0 B1

]
V −1.(4.3)

Let {xk} be the unit positive vector sequence generated by Algorithm 3. For each
xk we express it with the (unique) combination form

xk = x∗ cosϕk + V2pk sinϕk, ‖pk‖ = 1,(4.4)

where ϕk = ∠(xk,x∗) = arccosxT∗ xk. Define

εk = ρk − ρ > 0, Ck = ρkB −A.

Then from (4.3), one has

Ck = U

[
εk cTk
0 Lk

]
V −1, ck = ρkb− a, Lk = ρkB1 −A1.

From Lemma 4.1 and Theorem 2.2, Ck is invertible. By taking the inverse on both
sides of the above factorization,

C−1k = V

[
εk
−1 −εk−1cTk L

−1
k

0 L−1k

]
U−1.(4.5)

The global convergence of Algorithm 3 is given in the following theorem.

Theorem 4.1. Let (A,B) be an n × n matrix pair satisfying the conditions
(C1)-(C4). Suppose that the sequences {xk} and {ρk} are generated by Algorithm 3.
Then

lim
k→∞

xk = x∗ and lim
k→∞

ρk = ρ.
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Moreover, the asymptotic convergence rate is quadratic.

Proof. Using the decomposition (4.4), for any k one has

sinϕk = ‖V T2 xk‖.

Using the formulas xk+1 = yk+1/‖yk+1‖, yk+1 = C−1k Axk, and (4.3), (4.5), one has

sinϕk+1 = ‖V T2 xk+1‖ =
‖V T2 C−1k Axk‖
‖yk+1‖

=
‖L−1k A1V

T
2 xk‖

‖yk+1‖

≤
‖L−1k ‖‖A1‖‖V T2 xk‖

‖yk+1‖
=
‖L−1k ‖‖A1‖
‖yk+1‖

sinϕk.(4.6)

By Theorem 2.1, ρ is a simple eigenvalue of (A,B) and (A,B) does not have an
eigenvalue on (ρ, 1]. So (A1, B1) does not have any eigenvalues on the closed interval
[ρ, 1]. Since ρk ∈ (ρ, 1], for any k,

‖L−1k ‖ = ‖(ρkB1 −A1)−1‖ ≤ max
t∈[ρ,1]

‖(tB1 −A1)−1‖,

i.e., ‖L−1k ‖ is uniformly bounded above by a positive constant. Now, from (4.1), and
(4.6) one has lim

k→∞
sinϕk = 0, or equivalently lim

k→∞
xk = x∗. Then,

lim
k→∞

ρk = lim
k→∞

max
Axk
Bxk

= max

(
lim
k→∞

Axk
Bxk

)
= max

Ax∗
Bx∗

= ρ.

For proving the convergence rate, we first relate εk to ρk. Using (4.4),

εk = ρk − ρ = max
Axk
Bxk

− ρ = max
(A− ρB)xk

Bxk

= sinϕk max
(A− ρB)V2pk

Bxk
=: τk sinϕk.

Then, following (4.3), (4.4), and (4.5),

yk+1 = C−1k Axk = V

[
ε−1k ρ ε−1k (aT − cTk L

−1
k A1)

0 L−1k A1

]
V −1xk

= ε−1k (ρ cosϕk + (aT − cTk L
−1
k A1)pk sinϕk)x∗ + V2L

−1
k A1pk sinϕk,

and

xk+1 =
(ρ cosϕk + (aT − cTk L

−1
k A1)pk sinϕk)x∗ + V2L

−1
k A1pkεk sinϕk

‖(ρ cosϕk + (aT − cTk L
−1
k A1)pk sinϕk)x∗ + V2L

−1
k A1pkεk sinϕk‖

.

Using the formula in (4.6) again,

sinϕk+1 = ‖V T2 xk+1‖

=
‖L−1k A1pk‖εk sinϕk

‖(ρ cosϕk + (aT − cTk L
−1
k A1)pk sinϕk)x∗ + V2L

−1
k A1pkεk sinϕk‖

.
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Since ϕk → 0, one has sinϕk → 0 and cosϕk = 1 + O(sin2 ϕk). Because ‖L−1k ‖ is
uniformly bounded from above and pk is a unit vector, from the above relation

sinϕk+1 =
‖L−1k A1pk‖τk

ρ
sin2 ϕk +O(sin3 ϕk).

Note τk is positive (because εk and sinϕk are), and because Bxk → Bx∗ and pk is a
unit vector, τk is bounded from above as well. The above relation shows the quadratic
convergence rate of GNI.

5. Numerical experiments. In this section we present numerical experiments
to compare NI, MNI, GNI and shift-invert power method (SIP)[1]. The SIP that we
used is just the Rayleigh quotient iteration. In these examples, the initial vector is se-

lected to be x0 = 1√
n

[1, . . . , 1]T ∈ Rn. The initial eigenvalue is λ0 = max (B−A)−1Ax0

x0

for NI, and ρ0 = λ0

1+λ0
for MNI, GNI and SIP. All the computations are performed

using Matlab, version 6.5. with the machine precision about 2.22× 10−16.
Example 5.1. [2, example 3.7] Let

A =

 0 1 0
0 0 1

2(1 + ε2) 3− ε2 0


with 3 > ε2, and B = I + A be another nonnegative matrix. For the pair (A,B) the
conditions (C1)-(C4) are satisfied and the matrix B−A = I is well-conditioned. The
Perron root of (A,B) is ρ = ρ(A,B) = 2

3 , and the other eigenvalues are 1± i
ε . Taking

ε = 1.7, Figure 1 depicts how the residual norm evolves versus the number of iterations
for the NI, MNI, GNI and SIP, respectively. Note that the NI, MNI and GNI use 7
iterations to achieve the machine precision, and SIP only uses 5 iterations. However,
SIP does not preserve the positivity of the vectors during the iteration process. In
this example, the vectors computed in the second, third and fifth iterations of SIP are
actually negative, i.e., x2, x3, x5 < 0. In this example, MNI and GNI are comparable.

Example 5.2. Let

A =

 2 0 1
1 2 1
1 1 1


and

B −A = 6.00001× I −N, N =

 1 0 2
0 1 3
1 1 5

 ,
where B has negative entries. Since ρ(N) = 6, the matrix B − A is a nonsingular
M-matrix and is not well-conditioned. In fact,

cond(B −A) = ‖B −A‖‖(B −A)−1‖ = 6.831441069381088e+ 005.

Figure 2 depicts the residual norms of NI, MNI, GNI and SIP, respectively. Note that
both GNI and SIP use 2 and 3 iterations to achieve the machine precision, respectively.
However both NI and MNI uses 5 iterations to achieve the machine precision. NI,
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MNI and GNI always preserve the positivity of the vectors. For SIP, it again produces
negative vectors, which are x2 and x3. In this example GNI outperforms MNI.

Example 5.3. [7] Consider the second-order elliptic operator{
Lu ≡ −∆ · (D∆u) + b ·∆u+ cu = λu, in Ω,
u = 0, on ∂Ω,

(5.1)

where Ω ⊂ Rd(d ≥ 1) is a polyhedron, D = D(x) : Ω → Rd×d is symmetric positive
definite for all x ∈ Ω, b = b(x) : Ω→ Rd and c = c(x) : Ω→ R are sufficiently smooth
satisfying c(x) − 1

2∇ · b(x) ≥ 0 for all x ∈ Ω. Under these conditions, the operator
L has a simple principal eigenvalue λ1 and a corresponding positive eigenfunction
0 < u1(x) ∈ H1

0 (Ω), in the sense that for any eigenvalue λ of L one has Re(λ) ≥ λ1.
Using a P1 finite-element discretization the above eigenvalue problem is approximated
by the eigenvalue problem of a matrix pair (C,D), i.e.,

Cx = λDx,(5.2)

where C is the stiffness matrix and D is the mass matrix. In [7], it gives conditions
on the meshes so that in the resulting matrix pair, C is an invertible M-matrix and
D is irreducible nonnegative. Such a matrix (C,D) has a simple positive principal
eigenvalue λmin with a corresponding positive eigenvector. This is clear, since 1/λmin

is the Perron root of the irreducible nonnegative matrix C−1D. In this way, λmin not
just approximates λ1 numerically, it inherits the physical feature of λ1 as well.

In this example we test our iterations for computing λmin and its unit positive
eigenvector of the matrix pair (C,D). The pair is generated by setting d = 2, Ω =

[0, 1]× [0, 1], D =

[
10 9
9 0

]
, b(x) =

[
0
0

]
and c(x) = 0. The mesh is generated by

first applying a rectangular mesh that cuts the unit square Ω into (m − 1)2 equally
sized small squares, then by cutting each small square into two right triangles by
lining up the northeast and southwest vertices. As a result the size of the matrices
C,D is (m − 2)2 × (m − 2)2. We us m = 8, 10, 12, 16 to generate 4 pairs of (C,D)
with size 36× 36, 64× 64, 100× 100, and 196× 196, respeictively. Based on Remark
3.3, with each size we apply the iterations to the pair (D,C +D) instead to compute
its Perron root ρ, then λmin = 1/ρ − 1. Figure 3, 4, 5, and 6, respectively, give the
relation between residual norm ‖(C −λkD)xk‖ (with λk = 1/ρk− 1) and the number
of iterations for each of NI, MNI, GNI and SIP for different sizes. The results show
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that the GNI always converges faster than the others. Again, SIP don’t preserve the
positivity of the vectors generated during iteration process.

6. Conclusions. In this paper, the modified Noda iteration (MNI) and gener-
alized Noda iteration (GNI) have been developed for computing the Perron pair of
matrix pairs that follow the Perron-Frobenius theory. By using the techniques similar
to that in [8, 9] we proved that GNI is always convergent and it converges quadratical-
ly. MNI has a similar convergence behavior, but GNI is slightly simpler and Numerical
examples show that GNI performs slightly faster. It needs further study for compar-
ing the actual convergence behaviors of GNI and MNI. Another work needs to be
done is to develop an iterative method as the one in [18] so that the Perron pair can
be computed with high accuracy.
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